Name	$\begin{aligned} & \text { 苟 } \\ & \frac{4}{0} \end{aligned}$	$\begin{aligned} & \frac{4}{8} \\ & \frac{4}{0} \\ & \frac{0}{4} \end{aligned}$	$\stackrel{N}{N}$	$\stackrel{\text { ® }}{2}$	3	0 0 0	Description
Device ID	0x00	40001	16	S	R	10	Returns an identifier indicating the model of this device
Voltage A	0x01	40002	16	S	R	10	Instantaneous voltages, as 16-bit integers
Voltage B	0x02	40003	16	S	R	10	
Voltage C	0×03	40004	16	S	R	10	
Voltage Avg.	0x04	40005	16	S	R	10	Average of the instantaneous voltages, as 16-bit integers
Voltage AB	0x05	40006	16	S	R	10	Line-to-line voltages, as 16-bit integers
Voltage BC	0x06	40007	16	S	R	10	
Voltage CA	0×07	40008	16	S	R	10	
Voltage Line-to-Line Avg.	0x08	40009	16	S	R	10	Average of the line-to-line voltages, as a 16-bit integer
Voltage Angle AB	0x09	40010	16	S	R	10	Phase angle between voltage A and voltage B
Voltage Angle BC	0x0A	40011	16	S	R	10	Phase angle between voltage B and voltage C
Voltage Angle AC	0x0B	40012	16	S	R	10	Phase angle between voltage A and voltage C
Frequency	0x0C	40013	16	U	R	100	Frequency, as a 16-bit integer
Overflow	0x0D	40014	16	U	R	-	Set to a non-zero value when any of the above registers is out of range. The position of the set bits indicate which register(s) have overflowed (i.e., the $1^{\text {st }}$ bit indicates Voltage A, the $4^{\text {th }}$ indicates Voltage Avg., etc.).
Reserved	$\begin{aligned} & \text { OXOE- } \\ & \text { OXOF } \end{aligned}$	$\begin{aligned} & 40015- \\ & 40016 \end{aligned}$					
Voltage A	0×10	40017	32	F	R	1	Instantaneous voltages, as floating-point numbers
Voltage B	0×12	40019	32	F	R	1	
Voltage C	0×14	40021	32	F	R	1	
Voltage Avg.	0x16	40023	32	F	R	1	Average of the instantaneous voltages, as a floating-point number
Voltage AB	0×18	40025	32	F	R	1	Line-to-line Voltages, as floating-point numbers
Voltage BC	0x1A	40027	32	F	R	1	
Voltage CA	$0 \times 1 \mathrm{C}$	40029	32	F	R	1	
Voltage Line-to-Line Avg.	0x1E	40037	32	F	R	1	Average of the line-to-line voltages, as a floating-point number
Voltage Angle AB	0x20	40031	32	F	R	1	Phase angle between voltage A and voltage B
Voltage Angle BC	0x22	40033	32	F	R	1	Phase angle between voltage B and voltage C
Voltage Angle AC	0x24	40035	32	F	R	1	Phase angle between voltage A and voltage C
Frequency	0x26	40039	32	F	R	1	Frequency, as a floating-point number
Reserved	$\begin{gathered} 0 \times 28- \\ 0 \times 2 F \end{gathered}$	$\begin{aligned} & 40041- \\ & 40048 \end{aligned}$					
Primary PT Ratio (All)	0×30	40049	16	U	RW	-	Used for setting the PT ratios for each phase. Writing to the "All" registers globally sets the PT ratios for all of the phases simultaneously. If the PT ratios are not identical in all three channels, the "All" values are read as " 0 ".
Secondary PT Ratio (All)	0×31	40050	16	U	RW	-	
Primary PT Ratio A	0x32	40051	16	U	RW	-	
Secondary PT Ratio A	0×33	40052	16	U	RW	-	
Primary PT Ratio B	0×34	40053	16	U	RW	-	
Secondary PT Ratio B	0×35	40054	16	U	RW	-	
Primary PT Ratio C	0×36	40055	16	U	RW	-	
Secondary PT Ratio C	0×37	40056	16	U	RW	-	
Debug 16-bit	0×38	40057	16	S	R	-	These registers always output known values. They are useful for debugging communication with the device. Values: 16-bit: 12345; 32-bit: 1234567; Floating-point: 1234.567
Debug 32-bit	0×39	40058	32	S	R	-	
Debug Floating-Point	0x3B	40060	32	F	R	-	
Uptime	0x3D	40062	32	U	RW	-	Seconds since the device was last powered on or reset.
32-bit Little Endian Mode	0x3F	40064	16	B	RW	-	If enabled, 32b values are sent least significant word first. (default: false)
Voltage LED Threshold	0x40	40065	16	S	RW	-	Expressed as a percentage of full-scale voltage. (default: 5\%)
Serial Number	0x41	40066	32	U	RW	-	Factory programmed serial number of the unit.
Hardware Version	0x43	40068	16	U	R	-	Version numbers of different hardware and software components of this device. Divide by 100 to get the version number; for example, a value of " 100 " indicates version 1.00 .
Firmware Version	0x44	40069	16	U	R	-	
Bootloader Version	0x45	40070	16	U	R	-	
Model Number	0x46	40071	16	U	R	-	The model number of the device. This is expressed as a two-byte ASCII string. 19832 indicates the " Mx " model.
Input Configuration	0x47	40072	16	U	R	-	Always reads "6", indicating voltage input.
Passcode	0x48	40073	32	U	RW	-	Used for entering a passcode when locking or unlocking the device.
Lock	0x4A	40075	16	U	RW	-	" 0 " indicates unlocked, " 1 " indicates locked. With a passcode entered above, write " 0 " to unlock, " 1 " to lock, or " 2 " to change the passcode.
Auto Frequency Channel	0x4B	40076	16	B	RW	-	Auto-select a valid channel for frequency measurement. (default: true)
Frequency Active Channel	0x4C	40077	16	U	RW	-	Channel used to measure frequency. 0, 1, 2 for A, B, C. (default: 0)

