

ELKOR TECHNOLOGIES INC. - Page 1 - WattsOn-Mark II – USER MANUAL

THE ETPORT APPLICATION PROGRAMMING INTERFACE (API)
The ETport and the W2-E4 have an application programming interface (API) that can be used to write custom
applications or to re-brand the built-in web interface. Programs or web applications can send HTTP-based requests to the
ETport or W2-E4 and it will respond with the desired information or take the desired action. Requests can be made using

XML via an HTTP POST, or embedded directly into the URL of an HTTP GET. Requests can also be embedded in a
template file, for use with the Web Posting feature of these devices. Responses are returned either in XML, JSON, or
plain-text. API requests to modify settings or perform certain operations are password-protected.

This document describes the API itself and describes some aspects of HTTP, XML, and JSON which are used by the API;

however, the complete details of HTTP, XML, and JSON are beyond the scope of this document. For full details, please
see the following standards:

HTTP: RFC 2616 Hypertext Transfer Protocol – HTTP 1.1

XML: Extensible Markup Language (XML) 1.0 (Fifth Edition)

JSON: RFC 7159 The JavaScript Object Notation (JSON) Data Interchange Format

The ETport Application Programming Interface (API)...1

1. HTTP Request Format ..2

1.1. Status Codes..3

2. Template Format ...3

3. Parameters..4

4. Mathematical Operations on Results (templates only) ...5

5. Output Formats..6

6. Password-Protected API Calls (HTTP only) ...7

7. Combining Multiple API Calls (HTTP only)...7

8. API Call Listing..8

8.1. Special Parameters ...8
8.1.1. [format = f]...8
8.1.2. [pretty_print = p]..8
8.1.3. [mb_address = a]..8

8.2. Modbus-related API Calls ..9

8.3. Mathematical API Calls..10

8.4. Filesystem-related API Calls ..10

8.5. Settings-related API Calls...11

8.6. Miscellaneous API Calls ...11

9. Setting Listing ..13

ELKOR TECHNOLOGIES INC. - Page 2 - WattsOn-Mark II – USER MANUAL

1. HTTP Request Format

The API calls are made by making HTTP queries to the ETport or W2-E4 device's IP address on port 80. Either of two
HTTP methods, GET and POST, can be used to make the request. GET requests are convenient because they can be
tested by simply entering the appropriate URL into a web browser, however, the limitations in the URL syntax prevent
some of the more complex API calls from being made; HTTP POSTs must be used in those cases. When using HTTP GET,

the API call is embedded into the URL of the request. When using POST, the API call is sent as the body of the request in

XML format. The following is an example of the clock API call using each of the two methods.

GET method

GET /api/clock HTTP/1.1
Accept: application/xml
Connection: close

POST method

POST /api HTTP/1.1
Accept: application/xml
Connection: close
Content-Type: application/xml
Content-Length: 48

<?xml version="1.0" encoding="UTF-8"?>
<clock/>

The clock API call is encoded as the path /api/clock when using the GET method. When using the POST method, all

requests use the generic /api path, and the API call is encoded as the empty XML element <clock/> .

Using both methods, the Accept header can be set to either "application/xml", "application/json", or "text/plain",
according to the desired output type. If the Accept header is not provided, XML will be returned. "text/xml" is supported
as an alias to "application/xml". Using the POST method, the Content-Type header must be set to "application/xml" (or
"text/xml") and the Content-Length header must be set.

The Connection header may be set to "close" or "keep-alive". Setting it to "close" will cause the server to close the
connection after responding, while "keep-alive" will keep the connection open for subsequent requests; see RFC 2616
Hypertext Transfer Protocol – HTTP 1.1 for details.

Note that newlines in HTTP are represented by the byte 13 (hexadecimal 0D) followed by the byte 10 (hexadecimal 0A),

sometimes written as "\r\n " or "CR LF".

The GET method can be easily tested without special software simply by using a web browser; for example, if the IP

address of the ETport or W2-E4 device is 192.168.1.10, simply entering the URL http://192.168.1.10/api/clock

into a browser (such as Mozilla Firefox, Google Chrome, Safari, or Microsoft Edge) to receive the response.

Both of the above methods will return the same result, in XML format. An example response is shown below:

HTTP/1.1 200 OK
Content-Type: application/xml
Server: ETPWS v2.31
Transfer-Encoding: chunked
Connection: close

85
<?xml version="1.0" encoding="UTF-8"?>
<result>Thu Mar 07 16:21:04 UTC 2019</result>
0

The device may use "chunked" transfer encoding in the response, as in the example above, or may include a Content-
Length header, at its option. When using the chunked transfer encoding, the response is broken up into two or more
chunks, which are preceded by the number of bytes in each, with the final chunk containing zero bytes. For details on
chunked transfer encoding, see RFC 2616 Hypertext Transfer Protocol – HTTP 1.1.

HTTP requests may not be longer than 1 KB in size (though the responses may be of any length).

ELKOR TECHNOLOGIES INC. - Page 3 - WattsOn-Mark II – USER MANUAL

1.1. Status Codes

A successful API call will return the HTTP response code 200. Other codes are used when an error occurs as follows:

400: If the request could not be parsed, the Content-Type is unsupported, a required parameter was missing, or the
value of a parameter was invalid.

401: If a password-protected API call was used without supplying an HTTP Basic Authentication header, or the credentials

supplied were incorrect.

404: If no API call was found by the given name.

405: If the wrong method was used (GET or POST) for the URL that was used (i.e., using GET on /api).

406: If the Accept header was invalid or impossible for the given API call.

411: If the Content-Length header was not provided for an XML POST.

413: If the HTTP body was too large (greater than 1KB).

500: If an unexpected server error occurred.

504: If the API call required sending a Modbus message, and the Modbus device did not respond.

2. Template Format

All API calls that are not password-protected can be included in template files for use with the Web Posting feature on
ETport and W2-E4 devices. For details on the Web Posting feature in general, see the user manual for those devices.

Templates may contain arbitrary text, allowing data to be posted in any text-based format (such as XML, JSON, or a

custom format). API calls are "escaped" by inserting a dollar sign character, "$", followed by the API call and any
parameters it requires in brackets (a literal dollar sign may be inserted by using two consecutive dollar signs, "$$").

For example, the following template file contains the API call clock :

The device's current time is $clock()

When this template is posted, an HTTP POST will be sent to the configured web server, such as the following:

POST /example/path HTTP/1.1
Content-Length: 57
Connection: close

The device's current time is Thu Mar 07 16:21:04 UT C 2019

The ability to insert arbitrary text into the template allows many text-based formats or protocols to be used. For example,
if the web server requires POSTs be in the JSON format, the template could be written as follows:

{ "current_time": "$clock()" }

This will result in the following JSON POST:

POST /example/path HTTP/1.1
Content-Type: application/json
Content-Length: 50
Connection: close

{ "current_time": "Thu Mar 07 16:21:04 UTC 2019" }

By default, API calls in template files are replaced with text formatted as plain-text. Alternatively, results can be formatted
in XML or JSON format, by setting the optional named parameter "format" to "xml" or "json", respectively. See the
following section for details on passing parameters. Note that if the web server requires that headers such as Content-
Type be set, as in the above example, those can be added in the device's settings (see the user manual on that device for
details).

Unlike with HTTP-based API calls, there is no restriction on the size of template files.

ELKOR TECHNOLOGIES INC. - Page 4 - WattsOn-Mark II – USER MANUAL

3. Parameters

Some API calls accept or require additional parameters to be sent along with the call. Parameters can be named or
unnamed, and can be set to a value of the types string (for text), boolean (for true or false), or number (such as 10, 1.2,

or 0x2F). For example, the above clock API call accepts the optional named parameter style , allowing the user to

choose between multiple formats. The following example demonstrates the name parameters style set to the string value

"ISO8601" (the name of an ISO-standard time format) are passed using the HTTP GET method, the HTTP POST method,
and in a template.

HTTP GET method

GET /api/clock?style=ISO8601 HTTP/1.1
Accept: application/xml
Connection: close

HTTP POST method

POST /api HTTP/1.1
Accept: application/xml
Connection: close
Content-Type: application/xml
Content-Length: 64

<?xml version="1.0" encoding="UTF-8"?>
<clock style="ISO8601"/>

Template

$clock(style = "ISO8601")

Example result (HTTP GET or HTTP POST)

HTTP/1.1 200 OK
Content-Type: application/xml
Server: ETPWS v2.31
Transfer-Encoding: chunked
Connection: close

74
<?xml version="1.0" encoding="UTF-8"?>
<result>2019-03-07T18:05Z</result>
0

Example web post (from template)

POST /example/path HTTP/1.1
Content-Length: 17
Connection: close

2019-03-07T18:05Z

With the HTTP GET method, parameters are listed following a "?" character; subsequent parameters are separated by a

"&" character. With the HTTP POST method, parameters are given as XML attributes. In a template, parameters are given
inside the brackets (separated by commas, if there is more than one).

With the HTTP POST method, all parameters must be closed in quotation marks. In a template, only string parameters
are enclosed in quotation marks. Quotation marks are not used with the HTTP GET method.

Some parameters are unnamed. For example, in the following example, the int API call is used to read a 32-bit integer

register from a Modbus device at address 1. The register address, hexadecimal number 0x511, is an unnamed parameter.

HTTP GET method

GET /api/int?0x511&mb_address=1 HTTP/1.1
Accept: application/xml
Connection: close

HTTP POST method

POST /api HTTP/1.1
Accept: application/xml
Connection: close
Content-Type: application/xml
Content-Length: 64

<?xml version="1.0" encoding="UTF-8"?>
<int mb_address="1">0x511</int>

Template

$int(0x511, mb_address=1)

Example result (HTTP GET or HTTP POST)

HTTP/1.1 200 OK
Content-Type: application/xml
Server: ETPWS v2.31
Transfer-Encoding: chunked
Connection: close

63
<?xml version="1.0" encoding="UTF-8"?>
<result>1234567</result>
0

Example web post (from template)

POST /example/path HTTP/1.1
Content-Length: 7
Connection: close

1234567

With the HTTP GET method, parameters after the first are separated from the previous characters using a "&" character.
With the HTTP POST method, unnamed parameters are specified as the text content of the XML element representing the
API call.

ELKOR TECHNOLOGIES INC. - Page 5 - WattsOn-Mark II – USER MANUAL

(Note that, on the W2-E4, the mb_address parameter is ignored and may be excluded).

The following example shows multiple unnamed parameters given to the add API call, used to add the two numbers 10
and 5 together.

HTTP GET method

GET /api/add?10&5 HTTP/1.1
Accept: application/xml
Connection: close

HTTP POST method

POST /api HTTP/1.1
Accept: application/xml
Connection: close
Content-Type: application/xml
Content-Length: 64

<?xml version="1.0" encoding="UTF-8"?>
<add type="list">
 <item>10</item>
 <item>5</item>
</add>

Template

$add(10, 5)

Example result (HTTP GET or HTTP POST)

HTTP/1.1 200 OK
Content-Type: application/xml
Server: ETPWS v2.31
Transfer-Encoding: chunked
Connection: close

65
<?xml version="1.0" encoding="UTF-8"?>
<result>15.000000</result>
0

Example web post (from template)

POST /example/path HTTP/1.1
Content-Length: 9
Connection: close

15.000000

4. Mathematical Operations on Results (templates only)

Four mathematical API calls, add, subtract, multiply, and divide, exist which can be used to do math on the results of
other API calls. The mathematical operations on results of other calls may only be done from templates.

For example, to add the values of two 32-bit registers at addresses 0x120 and 0x122 together, the following syntax can
be used:

Template

Value 1: $int(0x120, mb_address=1)
Value 2: $int(0x122, mb_address=1)
Sum: $add($int(0x120, mb_address=1), $int(0x122 , mb_address=1))

Example web post

POST /example/path HTTP/1.1
Content-Length: 46
Connection: close

Value 1: 50
Value 2: 100
Sum: 150.000000

These mathematical operations can in turn be combined with other mathematical operations to create more complex
operations. For example, to POST the average of three 32-bit registers, 0x120, 0x122, and 0x124, the following template
could be used:

Template

Value 1: $int(0x120, mb_address=1)
Value 2: $int(0x122, mb_address=1)
Value 3: $int(0x124, mb_address=1)
Average: $divide($add($int(0x120, mb_address=1), $i nt(0x122, mb_address=1), $int(0x124, mb_address=1)) , 3)

Example web post

ELKOR TECHNOLOGIES INC. - Page 6 - WattsOn-Mark II – USER MANUAL

POST /example/path HTTP/1.1
Content-Length: 60
Connection: close

Value 1: 50
Value 2: 100
Value 3: 200
Average: 116.666667

5. Output Formats

API calls can produce results in three different formats: XML, JSON, and plain-text. The default output format for HTTP
requests is XML, while for templates it is plain-text. The output format can be selected either by supplying the named
parameter "format" to an API call (with the value of "xml", "json", or "text"), or by supplying a value for the Accept
header in HTTP requests ("application/xml", "application/json", or "text/plain" are accepted).

When making API calls via HTTP requests, the results are additionally wrapped in an XML element (preceeded by a

<?xml?> tag), or a JSON object, as appropriate, so that the result is a valid XML or JSON document. Results from
templates are not wrapped in this way, so that they can be included into XML or JSON documents as fragments. For

example, rather than returning the JSON string { result: "a string value" }, an API call made in a template

will simply return "a string value" . It is up to the user to design the template to conform with the desired output

format.

The following example demonstrates the results of an ls API call using HTTP, which lists the contents of a directory in

the filesystem, in each of the available formats.

Request 1 (HTTP GET)

GET /api/ls HTTP/1.1
Accept: application/xml
Connection: close

Example Result 1 (XML)

HTTP/1.1 200 OK
Content-Type: application/xml
Server: ETPWS v2.31
Transfer-Encoding: chunked
Connection: close

386
<?xml version="1.0"
encoding="UTF-8"?>
<directory path="/spiffs">
 <entries type="list">
 <entry size="190">
 registers.json
 </entry>
 <entry size="425">
 dummydir/template.json
 </entry>
 <entry size="3297">
 default_template.json
 </entry>
 <entry size="3310">
 cloud.json
 </entry>
 </entries>
</directory>
0

Request 2 (HTTP GET)

GET /api/ls HTTP/1.1
Accept: application/json
Connection: close

Example Result 2 (JSON)

HTTP/1.1 200 OK
Content-Type: application/json
Server: ETPWS v2.31
Transfer-Encoding: chunked
Connection: close

395
{
 "directory": {
 "path": "/spiffs",
 "entries": [
 {
 "size": 190,
 "value": "registers.json"
 },
 {
 "size": 425,
 "value": "dummydir/template.json"
 },
 {
 "size": 3297,
 "value": "default_template.json"
 },
 {
 "size": 3310,
 "value": "cloud.json"
 }
]
 }
}
0

Request 3 (HTTP GET)

GET /api/ls HTTP/1.1
Accept: text/plain
Connection: close

Example Result 3 (plain text)

HTTP/1.1 200 OK
Content-Type: text/plain
Server: ETPWS v2.31
Transfer-Encoding: chunked
Connection: close

280
path: /spiffs
entries:
 entry:
 size: 190
 value: registers.json,
 entry:
 size: 425
 value: dummydir/template.json,
 entry:
 size: 3297
 value: default_template.json,
 entry:
 size: 3310
 value: cloud.json
0

The following example shows the same API call, ls , when used from a template file to make a web post. The optional

named parameter pretty_print=2 is also used to add newlines and additional spacing for readability. If the format is

left unspecified, template API calls default to plain-text.

ELKOR TECHNOLOGIES INC. - Page 7 - WattsOn-Mark II – USER MANUAL

Template 1

$ls(
 format="xml",
 pretty_print=2
)

Example post 1 (XML)

POST /example/path HTTP/1.1
Content-Length: 332
Connection: close

<directory path="/spiffs">
 <entries type="list">
 <entry size="190">
 registers.json
 </entry>
 <entry size="425">
 dummydir/template.json
 </entry>
 <entry size="3297">
 default_template.json
 </entry>
 <entry size="3310">
 cloud.json
 </entry>
 </entries>
</directory>

Template 2

$ls(
 format="json",
 pretty_print=2
)

Example post 2 (JSON)

POST /example/path HTTP/1.1
Content-Length: 377
Connection: close

{
 "path": "/spiffs",
 "entries": [
 {
 "size": 190,
 "value": "registers.json"
 },
 {
 "size": 425,
 "value": "dummydir/template.json"
 },
 {
 "size": 3297,
 "value": "default_template.json"
 },
 {
 "size": 3310,
 "value": "cloud.json"
 }
]
}

Template 3

$ls(
 format="text",
 pretty_print=2
)

Example post 3 (plain text)

POST /example/path HTTP/1.1
Content-Length: 260
Connection: close

path: /spiffs
entries:
 entry:
 size: 190
 value: registers.json,
 entry:
 size: 425
 value: dummydir/template.json,
 entry:
 size: 3297
 value: default_template.json,
 entry:
 size: 3310
 value: cloud.json

6. Password-Protected API Calls (HTTP only)

Some API calls are password protected. These calls can not be used in a template file. When using these API calls over

HTTP, an Authentication header must be supplied. The username is always "admin"; the password is the value specified

in the setting admin_pwd (see section 9).

The value of the Authentication header must be the string "Basic" followed by the base-64 encoding of the username and
password separated by a colon. See RFC 2616 Hypertext Transfer Protocol – HTTP 1.1 for details on this header value.

7. Combining Multiple API Calls (HTTP only)

Multiple API calls can be combined into a single request, for convenience and performance reasons. Due to limitations in
HTTP URLs, this can only be done using HTTP POSTs with XML.

This is accomplished using the special API calls multi and multis . The multi API call does not require a password,

and can only include other API calls that do not require a password. The multis API call requires a password, and can

include any other API calls.

The following is an example which combines the clock , uptime , and timestamp API calls into a single HTTP request.

ELKOR TECHNOLOGIES INC. - Page 8 - WattsOn-Mark II – USER MANUAL

Request (HTTP POST):

POST /api HTTP/1.1
Accept: application/xml
Connection: close
Content-Type: application/xml
Content-Length: 113

<?xml version="1.0" encoding="UTF-8"?>
<multi type="list">
 <clock/>
 <uptime/>
 <timestamp/>
</multi>

Result:

HTTP/1.1 200 OK
Content-Type: application/xml
Server: ETPWS v2.31
Transfer-Encoding: chunked
Connection: close

302
<?xml version="1.0" encoding="UTF-8"?>
<responses type="list">
 <response>
 <result>Fri Mar 08 21:21:45 UTC 2019</resul t>
 </response>
 <response>
 <result>5048243</result>
 </response>
 <response>
 <result>3761068905</result>
 </response>
</responses>
0

8. API Call Listing

This section lists the API calls available on ETport and W2-E4 devices. Parameters are given in brackets, similar to how

they appear in template files. Optional parameters are enclosed in square brackets. The ellipses notation "…" indicates
that an arbitrary number of arguments may be supplied. Named parameters are always optional and are listed in the
format "[name=value]". Unnamed arguments always appear outside of square brackets.

8.1. Special Parameters

Some named arguments are special, able to be used on any API call, or have special rules regarding their use.

8.1.1. [format = f]

This named parameter may be used on any API call. It can be set to the value "xml" (the default), "json", or "text", to
control the output format of the result. See section 5 for details on different output formats.

8.1.2. [pretty_print = p]

This named parameter may be used on any API call. If this parameter is included, the results of the API call will be
formatted in a way that is easier for humans to read, using newlines and spacing. It is set to an integer between 0 and 10,
indicating the number of spaces which are used as indentation for child elements.

8.1.3. [mb_address = a]

This special parameter is mandatory on all Modbus-related API calls (see section 8.2) on ETport devices, but is not used
on W2-E4 devices. This is because ETport devices may be connected to multiple Modbus devices, so the address must be
indicated to specify which device to communicate with.

Within template files, the mb_address parameter can be given using special syntax, as shown below:

ELKOR TECHNOLOGIES INC. - Page 9 - WattsOn-Mark II – USER MANUAL

$10.short(0x510)

This is equivalent to:

$short(0x510, mb_address = 10)

When using a per-device template, the special value $this may be used in place of a Modbus address (only using the
special syntax) to indicate the device that is currently being queried. This allows the same template to be applied to
multiple devices, each creating a separate post. For example, if the ETport device is configured for per-device templates
with two devices at Modbus address 1 and 2 (see the post_addr_* setting in the last section), the following template will
generate two separate web posts, one for each device:

Example Template

The device at address $this has uptime $this.uint(0 x515) seconds.

Example Web Post 1

The device at address 1 has uptime 62 seconds.

Example Web Post 2

The device at address 2 has uptime 1351 seconds.

See the ETport manual for a detailed explanation of global and per-device templates.

8.2. Modbus-related API Calls

Each of the following API calls accept a register address parameter. The value of register_address must be a value
between 0 and 65,535, and may be given in either decimal, hexadecimal, binary, or octal. Note that the first address is 0,
not 1, and that "Modicon-style" addresses must be converted to "offset-style" addresses to be used (i.e., the Modicon-
style address 40003 is equivalent to the offset-style address 2).

short(register_address [, count=n] [, fc=c])
Returns the 2-byte integer value of the given Modbus register register_address. If count is given, n results will be
returned. By default, the Modbus function code 3 will be used; to use function code 4, set the fc parameter to 4.

int(register_address [, count=n])
Returns the 4-byte integer value of the given Modbus register register_address. If If count is given, n results will be

returned. By default, the Modbus function code 3 will be used; to use function code 4, set the fc parameter to 4.

float(register_address [, count=n], [precision=n])

Returns the 4-byte floating point value of the given Modbus register register_address. If count is given, n results will be
returned. If precision is given, the result will be rounded to p decimal places (from 0 to 10, default 6). By default, the
Modbus function code 3 will be used; to use function code 4, set the fc parameter to 4.

ushort(register_address [, count=n])
Returns the 2-byte unsigned value of the given Modbus register register_address. If count is given, n results will be
returned. By default, the Modbus function code 3 will be used; to use function code 4, set the fc parameter to 4.

uint(register_address [, count=n])
Returns the 4-byte unsigned value of the given Modbus register register_address. If count is given, n results will be
returned. By default, the Modbus function code 3 will be used; to use function code 4, set the fc parameter to 4.

fixedshort(register_address, decimal_point [, count=n])
Returns the 2-byte fixed-point value of the given Modbus register register_address with the decimal place at the given
point. For example, if the value of register 1 is 100, fixedshort(1, 2) will return 1.00. If count is given, n results will be
returned. By default, the Modbus function code 3 will be used; to use function code 4, set the fc parameter to 4.

slave-id([output=o])

ELKOR TECHNOLOGIES INC. - Page 10 - WattsOn-Mark II – USER MANUAL

Returns the device's slave ID code or string (as reported by Modbus function 17 Report Slave ID). If output is not given,
the slave ID code, run indicator flag, and text will be returned. Output may be one of "code", "run-indicator", or "text" to
only return the indicated value.

string(register_address, length)
Returns the string value of the given Modbus register register_address with the given maximum length. The higher-order

byte and the lower-order byte of each register are interpreted as individual ASCII characters, displayed sequentially. By
default, the Modbus function code 3 will be used; to use function code 4, set the fc parameter to 4.

rdi(code, object [, output = o])
Executes a Read Device Identification Modbus query, used for reading various constants ("objects") to identify the device.
If output is given, it determines the format of the result, which may be "list" (which outputs all results as a list), "value"

(which outputs only the first result as an individual value), or "full" (the default, similar to list, except including additional
technical details about the RDI request itself, such as the conformity level). See the Modbus Application Protocol
Specification for details on the Read Device Information Modbus query.

ushort-write(register_address, value1 [, value2] [, …])
Writes one or more two-byte register values to a register or block of registers, using the Write Multiple Holding Registers

Modbus function. Each value must be between 0 and 65,535 inclusive.

block(register_address, length)
Pre-loads a Modbus block into a cache, making subsequent smaller queries to the register_addresses in that block very
fast. This function is simply removed from the template, rather than being replaced with anything. This API call has no
effect when used in HTTP requests. By default, the Modbus function code 3 will be used; to use function code 4, set the
fc parameter to 4.

mb(byte1[, byte2][, …])
Send an arbitrary modbus query byte-by-byte and receive the response (including exception responses). Any number of
bytes can be passed to this function. This API call is password protected.

8.3. Mathematical API Calls

add(a, b[, c][, …][, precision=p])
Adds an arbitrary number of arguments together. If precision is given, the result will be rounded to p decimal places

(from 0 to 10, default 6).

subtract(a, b[, c][, …][, precision=p])

Subtracts an arbitrary number of arguments from the first argument, a. If precision is given, the result will be rounded to
p decimal places (from 0 to 10, default 6).

multiply(a, b[, c][, …][, precision=p])
Multiplies an arbitrary number of arguments together. If precision is given, the result will be rounded to p decimal places
(from 0 to 10, default 6).

divide(a, b[, c][, …][, precision=p])
Divides the first argument by an arbitrary number of arguments. If precision is given, the result will be rounded to p
decimal places (from 0 to 10, default 6).

8.4. Filesystem-related API Calls

ls([directory])
Lists the contents of the working directory, or of the supplied directory.

mv(current_filename, new_filename)
Moves (or renames) a file specified by current_filename to new_filename. This API call is password protected.

rm(filename)
Deletes a file specified by filename from the filesystem. This API call is password protected.

ELKOR TECHNOLOGIES INC. - Page 11 - WattsOn-Mark II – USER MANUAL

put(filename, contents)
Creates or overwrites a file specified by filename with the contents given by the string contents. This API call is password

protected.

cat(filename)

Returns the contents of the file specified by filename.

get-filesystem()
Returns the number of bytes in use on the filesystem, and the total number of bytes available in the filesystem.

8.5. Settings-related API Calls

get([name])
Returns the value of the setting named name, if name is supplied, or the value of all settings, if name is not supplied.

set(name, value=v)
Sets the value of the setting named name to the value v, if v is valid for this setting. If it is invalid, an error message will
be returned indicating the valid range or restrictions for this setting. This API call is password protected.

reset(name)
Resets the setting named name to its default value. This API call is password protected.

reset-all(name)
Resets all settings to their default value. This API call is password protected.

8.6. Miscellaneous API Calls

rssi()
Returns the received signal strength indicator of the connected Wi-Fi network, in decibels. If Wi-Fi is not currently

connected, 0 is returned.

clock([style=s])
Returns the current time according to the device, as a string of text. If style is given, it will be formatted according to
style s. Available styles are as follows:

Style Example

UNIX (default) Thu Mar 07 16:21:04 UTC 2019

ISO8601 2019-03-07T16:21Z

Legacy 2019/03/07 16:21:04 UTC

timestamp()
Returns the number of seconds since January 1st, 1900 at 00:00:00 UTC.

uptime()
Returns the number of milliseconds that have passed since the device was last turned on or power-cycled.

gateway-device()
Returns the part name of this device (the gateway).

gateway-name()
Returns the name of this device (the gateway).

gateway-version()
Returns the version number of this device (the gateway).

live()
Returns false if this post is buffered, true otherwise. Always returns true if used outside of a template.

ELKOR TECHNOLOGIES INC. - Page 12 - WattsOn-Mark II – USER MANUAL

mac()
Returns the MAC address of this device (depending on which interface is being used).

cloud-id()
Returns the device's Cloud ID, used when adding the device to an Elkor Cloud account. For this device, this is simply the

Ethernet MAC address (even if Wi-Fi is being used).

reboot()
Reboots the device. This API call is password protected.

post-now()

Triggers an immediate web post (rather than waiting for the posting interval to elapse), if posting is enabled and
configured.

clear-buffer()
Deletes any buffered posts from system flash memory.

diagnostics()
Returns task and memory statistics for debugging purposes.

connections()
Returns a list of active connections to the device, for debugging purposes. This API call is expensive and can adversely
affect the performance of the device, so take care to avoid making repeated calls frequently.

help()
Returns a list of the API calls and a brief description.

find()
Returns a list of IP address and configuration information, including the device, name, firmware version and release date,
ip address, subnet mask, default gateway, DNS servers, and Wi-Fi SSID.

get-firmware-configuration()
Gets information about the device's firmware, including the version number, release date, and operating system version.

get-status()
Gets status information for the device, including the uptime, Modbus activity, posting status, and all of the information

returned by the find API call.

nofail()
When used in a template, this API call allows individual API calls to fail without causing the entire template to fail. Failed

API calls will output an error string describing the failure, rather than their usual output value. This API call has no effect
when used outside of a template file.

blink()
Causes one of the device's LEDs to blink in a specific pattern, allowing it to be visually identified in the presence of
multiple similar devices. The blink pattern lasts for 4 seconds. For W2-E4 devices, the LED is the right orange LED on the
Ethernet jack. For ETport devices, the LED is the green "Status" LED. The pattern was chosen to avoid resembling that of
normal activity. The blink pattern can be described as follows, with orange indicating "on" and black indicating "off":

700 ms 300 ms 700 ms 300 ms 700 ms 300 ms

ELKOR TECHNOLOGIES INC. - Page 13 - WattsOn-Mark II – USER MANUAL

9. Setting Listing

This section lists the available settings on ETport and W2-E4 devices. These can be read or written to using the get and

put API calls (described in the previous section).

Setting Name Default

Value

R/RW Range/Restrict

ions

Description

commissioned 1 R 0-1 Set at the factory. When set to 0, all settings may be
written regardless of their R/RW field in this table.

mb1_baud 9600 R

(W2-E4);
RW
(ETport)

9600-460,800;

multiple of 9600

Baud rate of the Modbus Port 1.

mb1_parity 0 R
(W2-E4);
RW
(ETport)

0-2 Parity mode of Modbus Port 1.
0 = no parity; 1 = odd parity; 2 = even parity.

mb1_stop 1 R
(W2-E4);
RW

(ETport)

1-2 Number of stop bits used on Modbus Port 1.

mb2_baud 9600 RW 9600-460,800;
multiple of 9600

This setting currently has no effect on this device.

mb2_parity 0 RW 0-2 This setting currently has no effect on this device.

mb2_stop 1 RW 1-2 This setting currently has no effect on this device.

tcp_idle_time 7200 RW 1-1,000,000 Number of seconds a TCP connection may be idle
before being forcibly closed by the server to free
resources.

mbtcp_port 502 RW 1-65,535 TCP port for the Modbus TCP server to listen on.

http_port 80 RW 1-65,535 TCP port for the HTTP server to listen on.

https_port 443 RW 1-65,535 This setting currently has no effect.

tn_port 23 RW 1-65,535 TCP port for the telnet server to listen on.

api_udp_port 30139 RW 1-65,535 UDP port for the API UDP server to listen on.

api_tcp_port 30138 RW 1-65,535 This setting currently has no effect on this device.

post_en 0 RW 0-1 Enable or disable web posting.
0 = disabled; 1 = enabled.

post_seconds 60 RW 0-999,999,999 The interval between making web posts.

post_auth_en 0 RW 0-1 Enable or disable HTTP Basic authentication on web
posts.
0 = disabled; 1 = enabled.

post_timeout_s 60 RW 0-1,000,000 Maximum seconds to wait for a response when making
a web post to a server before giving up.

post_buf_en 1 RW 0-1 Enable or disabled buffering to the filesystem for failed
web posts.
0 = disabled; 1 = enabled.

post_buf_limit 60 RW 0-100 Percentage of the available filesystem space that may
be used by buffered posts. Any buffered posts in
excess of this limit will be discarded. It is

recommended to leave some amount of space free to
allow for firmware updates (which are typically about
1MB in size).

ntp_en 1 RW 0-1 Enable or disable the Network Time Protocol client for
automatic time/date acquisition.
0 = disabled; 1 = enabled.

ntp_listen_port 123 RW 1-65,535 UDP port to listen for NTP responses on.

ntp_port_0 123 RW 1-65,535 UDP port of the first server to send NTP requests to.

ELKOR TECHNOLOGIES INC. - Page 14 - WattsOn-Mark II – USER MANUAL

ntp_port_1 123 RW 1-65,535 UDP port of the second (backup) server to send NTP
requests to.

ntp_port_2 123 RW 1-65,535 UDP port of the third (backup) server to send NTP

requests to.

ntp_rate_m 1440 RW 30-65,535 Number of minutes between making NTP requests.

ntp_timeout_ms 5000 RW 10-65,535 Number of milliseconds to wait for an NTP response
before giving up.

ntp_retry_ms 2000 RW 10-65,535 Number of milliseconds to wait before retrying an NTP
request after the previous one failed.

eth_static_ip 0x0164a8c
0

RW 0-4,294,967,295 Static IP address for
the ethernet
interface.

eth_static_nm 0x00ffffff RW 0-4,294,967,295 Static subnet mask
for the ethernet
interface.

eth_static_gw 0xfe64a8c0 RW 0-4,294,967,295 Static default
gateway for the

ethernet interface.

eth_static_dn0 0xfe64a8c0 RW 0-4,294,967,295 Static DNS server
address for the

ethernet interface.

eth_static_dn1 0x0000000
0

RW 0-4,294,967,295 Static backup DNS
server address for
the ethernet
interface.

wifi_static_ip 0x0264a8c
0

RW 0-4,294,967,295 Static IP address for
the Wi-Fi interface.

wifi_static_nm 0x00ffffff RW 0-4,294,967,295 Static subnet mask

for the Wi-Fi
interface.

wifi_static_gw 0xfe64a8c0 RW 0-4,294,967,295 Static default

gateway for the Wi-
Fi interface.

wifi_static_dn0 0xfe64a8c0 RW 0-4,294,967,295 Static DNS server
address for the Wi-
Fi interface.

wifi_static_dn1 0x0000000
0

RW 0-4,294,967,295 Static backup DNS
server address for
the Wi-Fi interface.

The IP address is encoded as a
hexadecimal 32-bit little-endian
integer, i.e., 0x01020304 =
4.3.2.1. This setting has no
effect unless eth_mode is set to

0. Changing this setting will
cause the device to reboot.

http_sto_ms 30000 RW 0-4,294,967,295 Send timeout for the HTTP server.

http_rto_ms 30000 RW 0-4,294,967,295 Receive timeout for the HTTP server.

auto_reboot_s 86400 RW 0-4,294,967,295 Automatically reboot the device after the given number

of seconds. Set to 0 to disable.

reconnect_s 300 RW 0-4,294,967,295 Number of seconds to wait after being disconnected
from all networks before forcing a reconnect attempt.

telnet_en 0 RW 0-1 Enable or disable the telnet server.

0 = disabled; 1 = enabled.

tolerate_no_i2c 0 RW 0-1 This setting currently has no effect on this device.

format 0 RW 0-65,535 Set to 57,005 to format (completely erase) the device's
filesystem.

log_size_limit 1048576 RW 0-4,000,000 The maximum number of bytes that can be consumed
by a log file. This setting has no effect unless
log_filename is set.

wifi_chan_start 1 RW 1-14 The first Wi-Fi channel to scan when connecting to a

ELKOR TECHNOLOGIES INC. - Page 15 - WattsOn-Mark II – USER MANUAL

Wi-Fi network. Local regulations may limit the legal
values for this setting.

wifi_chan_count 11 RW 1-14;

wifi_chan_start +
wifi_chan_count
– 1 <= 14.

The number of Wi-Fi channels to scan. Local

regulations may limit the legal values for this setting.

wifi_max_tx_pwr 100 RW 100-10000 The transmit power of the Wi-Fi client. Local
regulations may limit the legal values for this setting.

attached_devs 0 (ETport);
9 (W2-E4);

R 0-25 Bitwise-OR of device codes that are embedded into this
device's hardware, used internally for determining
whether a firmware file is valid for this device or not.
STANDALONE = 0; WATTSONMKII = 1; ISPY = 2;
WATTSONMKII_ISPY = 3; ETNET = 4;
WATTSONMKII_ETNET = 5; ISPY_ETNET = 6;
WATTSONMKII_ISPY_ETNET = 7; IDLM = 8;
WATTSONMKII_IDLM = 9; ECM = 16;
WATTSONMKII_ECM = 17; ECM_ETNET = 20;
ECM_WATTSONMKII_ETNET = 21; ECM_IDLM = 24;
WATTSONMKII_ECM_IDLM = 25

etport_variant 0 R 0-2 Indicates the type of this device.
ETPORT = 0; ETPORT_W2: 1; ETPORT_MCM = 2

eth_mode 1 RW 0-1 Set the ethernet IP mode to either use a static IP
address, or to get one automatically from the router
with the DHCP protocol. If set to use a static IP

address, all eth_static_* must be configured.
STATIC = 0; DHCP = 1

wifi_mode 1 RW 0-1 Set the wifi IP mode to either use a static IP address,

or to get one automatically from the router with the
DHCP protocol. If set to use a static IP address, all
wifi_static_* must be configured.

STATIC = 0; DHCP = 1

post_time_unit 1 RW 0-2 Stores whether the web posting interval has been
chosen in seconds, minutes, or hours on the web
interface.
SECONDS = 0; MINUTES = 1; HOURS = 2

name ETport RW 32-char string User-setting name for this device.

wifi_ssid RW 33-char string SSID of the Wi-Fi network to connect to. Note that this
device will only connect to a Wi-Fi network if it is not

connected to a wired ethernet network.

wifi_pwd RW 65-char string Password/key of the Wi-Fi network to connect to.

admin_pwd admin RW 16-char string Administrator password used for password-protected

API calls and web-interface pages.

post_url RW 256-char string The URL to send web posts to. This setting has no
effect unless post_en is set to 1.

post_auth_user RW 32-char string The username to use for HTTP Basic authentication

when making when making web posts. This setting has
no effect unless post_auth_en is set to 1.

post_auth_pass <not
shown>

RW 32-char string The password to use for HTTP Basic authentication
when making when making web posts. This setting has

no effect unless post_auth_en is set to 1.

ntp_server_0 time.nist.go
v

ntp_server_1 pool.ntp.or

g

ntp_server_2 pool.time.o
rg

RW 64-char string The IP addresses or DNS names of NTP servers to try
sending NTP requests to. Up to three may be specified,

which are tried in rotating order until one responds.
This setting has no effect unless ntp_en is set to 1.

ELKOR TECHNOLOGIES INC. - Page 16 - WattsOn-Mark II – USER MANUAL

post_file_0 /spiffs/tem
plate.json

RW 64-char string

post_file_1

post_file_2

post_file_3

post_file_4

post_file_5

post_file_6

post_file_7

post_file_8

post_file_9

 RW 64-char string

Filenames of template files to use when web posting.
Up to 10 different template files may be specified. Each
template file will by processed in order and a web post

will be made to the server specified in the post_url
setting. These settings have no effect unless post_en is
set to 1.

post_method POST RW 32-char string The HTTP method to use when posting. Generally, this
should be set to POST (the default), GET, or PUT,
according to the server's requirements, but any string
may be entered for use with custom web servers.

post_headers RW 256-char string;
valid header
format

Any additional headers to send with each web post. If
not empty, this setting must contain one or more lines
containing a ':' and ending with the bytes 13, and 10
(sometimes referred to as "CR LF" or "\r\n"). Header

names and values must be ASCII bytes between 32
and 126. An example is as follows:

My-Custom-Header: a value\r\n
My-Custom-Header-2: another value\r\n

post_ct RW 32-char string The value to use for the Content-Type header for the
web post. If empty, no Content-Type header will be
sent. In general, this should match the format of the
template, such as "application/xml" for XML templates,
"application/json" for JSON templates, etc.

http_headers RW 256-char string Any additional headers for the HTTP server to send
when responding to HTTP requests. If not empty, this
setting must contain one or more lines containing a ':'
and ending with the bytes 13, and 10 (sometimes

referred to as "CR LF" or "\r\n"). Header names and
values must be ASCII bytes between 32 and 126. An
example is as follows:

My-Custom-Header: a value\r\n
My-Custom-Header-2: another value\r\n

debug_tag_0 MBTCP RW 32-char string Tag to enable additional messages to be displayed in
the log, for debugging purposes.

debug_tag_1 HTTP RW 32-char string Tag to enable additional messages to be displayed in
the log, for debugging purposes.

debug_tag_2 RW 32-char string Tag to enable additional messages to be displayed in
the log, for debugging purposes.

debug_tag_3 RW 32-char string Tag to enable additional messages to be displayed in
the log, for debugging purposes.

log_file RW 32-char string Filename for a log file. If not empty, a copy of the log
will be written to the filesystem at this filename. It is
not recommended to enable this permanently, as it has
a significant performance penalty, and will eventually
wear out the flash memory.

wifi_country WW RW 3-char string Two-character country code representing the local
regulations affecting the Wi-Fi channels and

transmission power. Defaults to "WW" representing
"World-wide" values that should be valid in most

ELKOR TECHNOLOGIES INC. - Page 17 - WattsOn-Mark II – USER MANUAL

places.

post_addr_0

post_addr_1

post_addr_2

post_addr_3

post_addr_4

post_addr_5

post_addr_6

post_addr_7

post_addr_8

post_addr_9

000000000
000000000

000000000
000000000
000000000

000000000
000000000
0

RW 32 bytes, each
between 0 and

248.

Null-terminated list of Modbus addresses corresponding
to each template file. If the first byte of this setting is

00, the corresponding template is a "global template,"
and all subsequent bytes are ignored. Global templates
are processed once each, resulting in a single web post

for each template.
If the first byte is not 00, the corresponding template
file is a per-device template. This template will be
processed once for each non-zero byte in the value of

this setting until the first 00 byte is reached. This
results in separate web posts for each Modbus device.

